Information-Centric Networking for Multimedia Dissemination & the Internet-of-Things

George C. Polyzos

Mobile Multimedia Laboratory
Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business
113 62 Athens, Greece

polyzos@aueb.gr, http://mm.aueb.gr/
Tel.: +30 210 8203 650
Outline

- Pub-Sub Internetworking (PSI): overview & unique features
- Other ICN research projects
 - I-CAN: Information-Centric Access Networks (GR)
 - POINT: IP Over ICN - The Better IP? (EU H2020)
- ICN for the IoT: observations and vision
- CoAP over ICN
 - CoAP over PSI / for POINT
 - CoAP over CCN
- MMlab Research & People
Internet History and Outlook

- At the **beginning**…
 - cooperation; no competition…
 - no commercial traffic! (…flames…)
 - endpoint-centric services/E2E
- **Now**…
 - Content distribution…
 - >70% of traffic is video↑
 - Overlays… DPI by ISPs…
 - Trust? Endpoint trust?
 - viruses, phishing, DoS attacks…
 - E2E?
 - NAT, firewalls, middleboxes, CDNs
 - The sender has the power…
 - Tussles…
 - e.g.: privacy vs. accountability

- **Connecting Wires**
 - the past…

- **Interconnecting Computers**
 - the current Internet
 - evolutionary development
 - … started decades earlier

- **Interconnecting Information**
 - the Future Internet
 - ‘revolutionary’ research
 - tussle resolution at or near run-time
 - Trust-to-Trust principle

towards… Information-Centric Networking

polyzos@uae.gr
Content Centric Networking (CCN) / Named Data Networking (NDN)

- CCN
 - @ PARC
- NDN /2
 - NSF
 - UCLA, ...

- CR A
 - PIT Name Requested
 - /aueb.gr/ai/new.htm Subscriber
 - CS Name Data
 - /aueb.gr/ Data

- CR C
 - FIB Name Next
 - /aueb.gr/ CR C
 - /aueb.gr/cs CR B
 - PIT Name Requested
 - /aueb.gr/ai/new.htm Subscriber
 - CS Name Data
 - /aueb.gr/ Data

- CR B
 - PIT Name Requested
 - /aueb.gr/cs Publisher 2
 - /aueb.gr/ Data

- Publisher 1
 - PIT Name Requested
 - /aueb.gr/ Publisher 1
 - /aueb.gr/ Data

- Publisher 2
 - PIT Name Requested
 - /aueb.gr/cs Publisher 2
 - /aueb.gr/ Data

- Link
- (1-3) Interest Message
- (4-6) Data

polyzos@aueb.gr
MobilityFirst

- 160 bit Globally Unique Identifier (GUID)
 - for each information object, device, service
- GUID translated into a network address (IP) through a Global Name Resolution Service (GNRS)
- publishers register GUIDs to GNRS and subscribers perform requests/queries
- routing takes place based on the network address
Our ICN-related Research Projects

- **PSIRP**: Publish Subscribe Internet Routing Paradigm
 - FP7 ICT STREP, 2008-2010
 - the basis
 - focus on (inter)-networking

- **PURSUIT**: Publish Subscribe Internet Technologies
 - FP7 ICT STREP, 2010-2013
 - extending, above & below the Internet layer
 - optical, wireless, mobility, transport...

- **Euro-NF**: Anticipating the Network of the Future—From Theory to Design
 - FP7 ICT Network of Excellence, 2008-2012
 - ASPECTS, GOVPIMIT, E-key-nets

- **EIFFEL**: Evolved Internet Future For European Leadership
 - FP7 ICT SSA, 2008-2010; Think-Tank continued
 - June 2011 TT @ MIT: *Information-Centric Networking*

- **φSAT**: The Role of Satellites in Future Internet Services
 - European Space Agency funded
 - 2011-2013

- **I-CAN**: Information-Centric Future Access Networks
 - NSRF (Greece), 2014-2015

- **POINT**: **iP Over ICN** - the betTer IP
 - H2020 ICT STREP, 2015-2017

- **SatNEx IV**, ESA, 2015-2016
 - Y1 WI 5: ICN over MAC
 - Y2, WI 4: Caching
Publish-Subscribe Internetworking (PSI) Key Functions and Components

- **publish – subscribe – rendezvous**
 - Rendezvous **ID: hash of content** (/name)
 - asynchronous and multicast
 - restores the imbalance of power sender/receiver(s)
 - + Scope ID: aggregation, policies…

- **PSI Basic Functions: RTF**
 - **Rendezvous**: Matches *publications* with *subscriptions* and initializes forwarding
 - **Topology**: Monitors the network and creates information delivery paths
 - **Forwarding**

PSI Identifiers

1. Publish / Subscribe
2. Meta
3. Data
 - Application Identifiers (AId)
 - Rendezvous Identifiers (RId)
 - Forwarding Identifiers (FId)

Diagram:
- Scope Identifiers (SId) associated with...
- Includes...
- Resolved to...
- Define...
- Network Transit Paths

polyzos@aueb.gr
Publish-Subscribe Internetworking (PSI)
On-path caching

- Very lightweight
 - bypasses rendezvous network
- Good for
 - multicast error control
Off-path caching

- Uses the rendezvous network
 - to serve more users
- Good for
 - local (access network) caching
Content replication

- The rendezvous network chooses the best source

- Good for CDN-like proactive replication
Proactive Selective Neighbor Caching for enhancing Mobility Support in ICN

- Delay can be reduced by using proxies to pre-fetch and cache data
 - Mobile obtains data from local cache rather than remote server
 - Local network can have low capacity backhaul (e.g. femto/small-cells, hotspots)
- Proactive Selective Neighbor Caching
 - Mobile initially connected to proxy i
 - ICN receiver-driven model reveals which data items are requested
 - Select optimum subset of neighbor proxies to proactively cache requested data
 - If mobile connects to one of these proxies it can immediately receive data not obtained due to disconnection
- Selection of neighbor caches to pre-fetch data depends on
 - Probability mobile connects to caches
 - Available cache space
 - Delay reduction gains

PSI Unique Features

- **Fast forwarding**
 - Bloom filter based forwarding (→ forwarding identifiers)
 - simple, stateless, fast forwarding
 - incl. for multicast
 - path (‘source’) routing
 - path as compact Bloom filter carried on packets

- **Centralized – ‘SDN compatible’ approach**
 - (intra-domain) routing/resource allocation
 - topology discovery/management

- **‘recursive’ use of pub/sub …**
 - object level
 - chunk/packet level…
 - pull transport, error control, rcvr flow control
 - = slow & fast rendezvous
 - topology formation: handover = subscribe to network…

polyzos@aueb.gr
Prototype Implementations & Testbeds

1. **PSIRP Testbed (w/ Blackhawk)**
 - 6 countries: UK, FI, GR, D, BU, **US**
 - In addition: Belgium during ICT demos
 - Tunneled over the public Internet
 - +dedicated fiber where available

2. **PURSUIT Testbed (w/ Blackadder)**
 - 25 nodes
 - 5 countries: UK, FI, GR, D, **US**
 - Tunneled (VPN)
 - over the public Internet

3. **φSAT Testbed w/ SAT emulation**

Multimedia over ICN
Multimedia (streaming) over PSI

- **Motivation:**
 - “YouTube” a la PSI …

- **Streaming videos**
 - without RTP/TCP/IP
 - only native PSI

- **Basic Components of the application:**
 - **Publisher**: the owner of the video
 - **Subscriber**: the user that seeks to view the video

- **Technologies Involved**
 - Java-JMF player
 - JPSI
 - JNI
 - PSI

- **We tried different applications**
 - Video
 - Audio/voice (VoPSI)
 - …
Mobile Multi-Source Video Streaming

- Exploit multi-source & multi-interface
 - for lower cost
 - resilience
 - better QoE
- Mobility-based proactive caching
- Influence of multi-rate Wi-Fi

polyzos@aueb.gr
I-CAN Video-Streaming Emulation Experiments (& Demos…)

● Topology Description
 ◆ Each of the experiments involves a topology and a route
 ■ described by an xml file
 ◆ An Android device parses this file in order to learn the topology and scenario

● Scenarios
 ◆ Streaming w/ & w/out Caching
 ◆ Multisource Streaming
 ■ Fault Tolerance
 ◆ Wi-Fi Direct

polyzos@aueb.gr
PSI MM dissemination – WAN design

- RVZ system **tracks active subscriptions**
 - Soft-state (expires after timeout)
 - Explicit un-subscribe
- Upon subscription
 - RVZ system requests multicast tree (from TM)
 - LIPSIN forwarding identifier sent to publisher
- Suitable for real-time information delivery
 - Live media streaming
 - Notifications
 - Twitter, Facebook updates
 - On-line gaming
 - On-line storage synchronization
 - Dropbox
Optimization Opportunities

Exploit

1. Functional organization
 - Item resolution part of network layer **BUT** decoupled from forwarding path establishment

2. In-network resources
 - TM nodes → (logically) centralized path/tree formation

3. Stateless multicast forwarding
 - Compute minimum cost (Steiner) trees for multicast delivery
 - Cost of optimization:
 - Signaling cost: resolve the subscription
 - analogous to a DNS or DHT resolution
 - Computation delay at TM
Motivate Shift in Network Architecture

- What is new here?
- Steiner trees studied extensively in the past
 - BUT not implemented in IP
- Why?
- In principle, functions are not separated
 - Each IP router participates in distributed (multicast) routing and forwarding protocols
 - Group membership messages also install forwarding state
- Very hard to establish Steiner trees
Evaluation: Streaming over Planetlab

Case study: simple streaming application
- Deployed in Planetlab Europe
 - 20 forwarders
 - 30 users
 - 6 available streaming channels
- Java-based

In the meantime
- Prototype ported to click
- Open-source release
- Supports native layer-3 (over Ethernet) and overlay (over UDP) operation
- Steiner-tree computation not part of the public release
Bandwidth Savings

- Steiner-tree byte footprint **reduced** by
 - 30% compared to Shortest-path trees
 - 48% compared to multiple unicasts
- Steiner-tree savings are subject to graph density
 - Architecture exploits path redundancy
 - Network planning?

- Computation Delay at TM
 - At this scale, computation of Steiner tree required less than 10ms
 - Additional delay is unnoticeable
Scalability

- Centralized operations were considered an anathema in networking
 - but SDN/OpenFlow is changing the mindset
- Yet, we do not expect to perform centralized path/tree formations at a global level
- Networks organized in PSI (sub)networks
 - PSI backbone / PSI access networks (users)
- PSI subnet aggregates subscriptions before forwarding them to backbone
- De-multiplex incoming data
Evaluation: Emulation of Real Network

- *Emulated AS 224* (Norwegian University & Research Network)
 - 233 routers → PSI backbone
 - 75 access routers → 75 PSI access networks
 - 10 users in each access network → 750 users
- Abandoned Planetlab, installed the prototype in a single workstation
 - An instance for each node, communication according to topology
- Applied TM intelligence in the backbone
- Ran the system for the two multicast policies
 - Shortest-path tree
 - Steiner tree
- Same workload
- Measured how much is flow establishment delay increased in the Steiner-tree case against Shortest-path tree case
Flow establishment delay

- For 90% of subscriptions,
 - delay for Steiner tree multicast increased less than 2ms compared to Shortest-path tree multicast
- For 99.6%, less than 60ms
- A few outliers, believed to be artifacts of workstation load and software implementation
ICN for the IoT
A vision for the IoT

- many consider the IoT as an extended WSN
- need to move one step further!
 - fully exploiting connected things
 - smart things
 - & things with no computational power whatsoever
 - dumb, but potentially ‘dynamic’; indirectly connected
 - their state changes; observed or set by others
 - proxies...
- focus on **information**, not things
 - **application independent**
 - no silos!
 - information obtained for one app (silo) to be available to another (originally unexpected) app
 - under user/owner control...
ICN for the IoT

● Opportunity!
 ◆ Unsettled technologies/architectures
 ◆ Vertical (silo) applications/technologies → interoperability… lacking
 ◆ ICN could enable interoperability
 ■ play the role of middleware … in cleaner & leaner way

● Access Control!

● Privacy? Potential for ‘privacy attacks’ so widespread…
 ◆ Privacy: through access control in rendezvous architectures
ICN + IoT

Many recent publications... research...

- ACM SIGCOMM ICN 2014

<table>
<thead>
<tr>
<th>15:40-16:40 Session 4: Internet of Things</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session Chair: Jeff Burke (UCLA, USA)</td>
</tr>
</tbody>
</table>

Multi-Source Data Retrieval in IoT via Named Data Networking
Marica Amadeo (University Mediterranea of Reggio Calabria, Italy); Claudia Campolo (University Mediterranea of Reggio Calabria, Italy); Antonella Molinaro (University Mediterranea of Reggio Calabria, Italy)

Information Centric Networking in the IoT: Experiments with NDN in the Wild
Emmanuel Baccelli (INRIA, France); Christian Mehlis (Freie Universitaet Berlin, Germany); Oliver Hahn (INRIA, Germany); Thomas C. Schmidt (Hamburg University of Applied Sciences, Germany); Matthias Wahlisch (Freie Universitaet Berlin, Germany)

- ICNRG
 - Information-centric Networking: Baseline Scenarios -- “2.8. Internet of Things”
 - Requirements and Challenges for IoT over ICN
 - Proposed Design Choices for IoT over Information Centric Networking
Why ICN for the IoT

- integrate (vertical application) **silos** into an *Internet* of Things
- ICN semantics: pub/sub, asynchronous…
- better/easier network resource management
 - multicast, multi-homing, caching
- easier network attachment and “thing” configuration
- easier “QoS” management
 - explicit naming of traffic (information/content)
 @ the (inter-)network layer
IoT Challenge: Naming

- ... as the integration enabler
 - identifiable ➔ potentially accessible
 - compound names?
- a name (+? metada…) should identify
 - the thing’s identity
 - RFID, QRCode, Barcode
 - @ type level
 - individual thing
 - the thing’s owner & context
 - properties...
- related issues
 - information authentication and provenance verifications
 - manageability, revocability
 - group names
ICN-IoT Semantics

- ICN semantics
 - pub/sub, asynchronous, in either order…
 - persistent interests, group communication
 - metadata
 - facilitate service discovery, service composition…

- (IoT) application (protocol) semantics
 - … the same… consider CoAP…
 - easier to implement CoAP, MQTT… over ICN
 - their semantics match better
 - leaner/more efficient protocol stacks
 - multipoint, across domains & apps
 - multicast, anycast, multi-homing
 - caching: allows separation/disconnection of things
Better/more Flexible Resource Utilization
… with an ICN approach

- better/easier network resource management
 - multicast, anycast, multi-homing, caching
- easier network attachment and “thing” configuration
- easier “QoS” management
 - explicit naming of information/content at the (inter-)network layer
- smaller ICN stack (than IP) => simpler implementations
 - energy efficiency, cost (maintenance etc.) reduction
- easier to create in network security mechanisms
 - filtering, application layer firewalls
More IoT Challenges:

- Contextual Information Lookup
 - Name, metadata, user context…
 - API hides the complexity of the underlay topology and architecture

- Information Forwarding
 - Delay tolerance, mobility
 - Permanent and ephemeral subscriptions

- Trust
 - Limited (or no!) computational power
 - Things can be tampered with; software on things not easily updated
 - Transitive trust and trust delegation
 - Eliminate the need for CA?
Related Projects
Information-Centric future mobile and wireless Access Networks

- **Motivation**: Mobility presents new challenges and opportunities
 - Mobiles have multiple wireless interfaces
 - Different wireless access technologies have different characteristics

- **Objectives**: investigate
 - ICN requirements & features for mobile/wireless access networks
 - multi-source, multi-path, multi-interface
 - in-network and proactive caching
 - privacy support

- Nationally funded project – ARISTEIA II
I-CAN Architecture Features

- **Publication proxies**
 - store and advertise content on behalf of content owners
 - content remains available even when owner is offline

- **Subscription proxies**
 - send subscriptions on behalf of actual receivers
 - beneficial if users are mobile and have disconnections
 - can exploit proactive caching

- **Future content & persistent subscriptions**
 - can reduce signaling overhead in cellular and contention-based access networks

- **Use case-scenario: D2D (multimedia) content sharing**
 - (provider controlled) sharing of content among clients
 - e.g., travelling on a train
 - 1st copy (maybe) obtained over cellular
 - train cache may also participate…
 - content (chunk) naming facilitates operation
 - can be adapted to work with IP (& D2D/P2P) technologies

polyzos@aueb.gr
POINT: IP Over ICN - The Better IP?

- Project: Running: 1/1/2015-31/12/2017
- Partners:
 - Aalto U (co-ordinator), ELL-i (FI)
 - Intracom Telecom, AUEB (GR)
 - RWTH Aachen (DE)
 - Primetel (CY)
 - CTVC Ltd, Interdigital, U Essex (UK)
- Trials in Cyprus (@Primetel)
- Concept: IP over ICN (PSI) over SDN
 - Premise: IP apps can do better over ICN
 - Need to define what “better” means
 - Better utilisation in HTTP streaming scenarios
 - Better privacy of personal data and metadata
 - Better management of virtual network paths
 - Better (fairer) content distribution
POINT Domain

- Focus
 - 1 ISP
 - User Equipment (UE): no changes (required)
 - i.e. IP
 - ICN used internally in the network
 - NAP: Network Access Point
 - ICN could be exposed to UE

polyzos@aueb.gr
POINT Platform Architecture

Blackadder +

- Application-facing abstractions
 - HTTP, CoAP,…

- Novel dissemination strategies
 - For access networks

- Integration with SDN
 - ICN over SDN

- Flexibly-grained QoS
 - per abstraction

- Key target protocols/services
 - HTTP
 - CoAP
 - IP

Fine-grain QoS abstraction

ICN-over-SDN shim layer

L2 Transport Networks
The **POINT** IoT story

- **IoT / IP**
 - CoAP over ICN
 - CoAP handler at the NAP
 - UE: no changes (required)
 - i.e. IP

- **IoT / ICN**
 - native ICN

polyzos@aueb.gr
An IoT reference architecture

- Caching
- Aggregation
- ...

CoAP Client

Host #1

Host #2

FW-Proxy

GW #1

GW #2

Thing #1

RD/GW #1

RD/GW #2

RD/GW #3

Network #1

Network #2

Network #3

CoAP Server

polyzos@aueb.gr
A POINT rendition of the IoT reference architecture
Scenario #1: Coincidental multicast
(asynchronous requests, coap-observe RFC 7641)
Scenario #2: One-to-Many Requests (group-communication RFC 7390)

CoAP GET all.networks/Purple

lookup all.networks

A.B.C.D

CoAP GET all.networks/Purple

JOIN A.B.C.D

RD/GW #1 #2 #3

Network #1 #2 #3

Host #1

GW #1

FW-Proxy

polyzos@aueb.gr
Scenario #3: Service Composition

GW #1 -> CoAP GET AVG/Purple -> AVG/Purple

AVGer

RD/GW #1

Purple

RD/GW #2

Purple

polyzos@aueb.gr
CoAP over ICN

- CoAP ~ ICN
 - asynchronous communication
 - persistent interests
 - group communication

- advantages (to CoAP application developers & operators)
 - applications do not have to deal with IP multicast
 - no modifications to DNS
 - state overhead moved from the (constrained) endpoints to the network
 - for requests to … not yet available resources & “observe” extension
 - the CoAP server receives a single request
 - all other requests are suppressed by the NAPs
 - (~operator): CoAP and CoAP “observe” create opportunities for multicast
 - the network then uses multicast to handle bursts of traffic

- CoAP over DTLS
POINT IoT Experimentation

- ‘things’ with Power over Ethernet
- Connected at the edges of the POINT testbed
Observations

- ICN has some common key features across architectures
 - Content distribution has been the initial key motivation for ICN (CCN)
 - Information dissemination and access (on the IoT) might be the real application
- ICN is well positioned to provide for the IoT
 - caching: client-provider (thing) separation, asynchrony, energy efficiency
 - multihoming: access/unify multiple separate networks/applications
 - traffic management: exploiting explicit information naming in the network
 - mobility support: where relevant—many things are mobile
 - security: new models, new attempts, new problems…
 - privacy: through access control in rendezvous architectures

- Outlook
 - Scalability, efficiency, acceptance, deployment …
 - Security and privacy